РадиоКот :: Светодиодный УФ фонарик
Например TDA7294

РадиоКот >Схемы >Аналоговые схемы >Игрушки >

Теги статьи: ФонарикУльтрафиолетДобавить тег

Светодиодный УФ фонарик

Автор: )_Леопольд_(
Опубликовано 25.07.2017
Создано при помощи КотоРед.

Всем читающим добрый день и мое категорическое «мяу»!

Захотелось мне сделать ультрафиолетовый фонарик. Вообще говоря, иметь подобную вещь хотелось бы давным-давно, еще в детстве. Ведь это же особое невидимое излучение, которое делает чудеса! Из металлов вырываются электроны, разные вещества начинают светиться, детонирует кислородно-водородная смесь… Можно ходить с такой штукой и чувствовать себя исследователем...

Прошло время. Мир изменился, появились новые гаджеты, новые моды, увлечения. Стали доступны многие вещи, о которых когда-то можно было лишь мечтать. Конечно, у меня уже есть ультрафиолетовая лампа черного цвета, да и наука стала обыденной жизнью. Но вот однажды увидел в продаже ультрафиолетовые светодиоды, и решил взять и сделать маленький необычный карманный фонарик.

Сразу скажу, многие светодиоды из тех, что продаются на радиорынках и именуются ультрафиолетовыми, ни на что особенное не способны. 390 нм – лишь светится бумага да маркеры, 380 нм – кажется, уже можно выявить некоторые метки на купюрах, но большинство знаков все же остаются невидимыми. Берите светодиоды на 365 нм. Излучение с такой длиной волны присутствует в спектре ртути, а стекло ламп «чёрного света» как раз и пропускает наружу этот диапазон.

Требования к схеме у меня были следующими: во-первых, она должна питаться от одной батарейки, а во-вторых, обеспечивать как можно более плавный и щадящий режим работы светодиода (отсутствие бросков тока, перегрузок, мерцания). Что касается мерцания, в обычных фонариках оно плохо еще тем, что создает нагрузку для глаз. Глазу приходится подстраиваться под импульсы светового потока, усредняя их, в результате утомляются мышцы хрусталика и снижается комфорт восприятия. Пусть лучше эту работу делают конденсаторы.

Мой ультрафиолетовый светодиод выглядит так же, как и обыкновенный. Номинальный ток у него 20 мА, прямое падение напряжения 3,3 В.

В интернете полным-полно схем повышающих преобразователей для питания светодиода от одной батарейки. Например, такие (щелкайте для увеличения):

 

В первой схеме мне понравилась идея реализации устройства, чего-то такого как раз я и хотел. Сравнивая различные варианты, замечаем, что все они построены на основе блокинг-генератора (особенно это бросается в глаза в третьей, минималистической схеме).

К достоинствам подобных схем обычно относят их работоспособность при разряде батарейки до напряжения порядка 0,8 В. Но мне не понравилось, что яркость светодиода при этом тоже снижается. Раз уж схема повышает напряжение, пусть и светит нормально во всем рабочем диапазоне. Кроме того, у меня почему-то никак не получалось добиться требуемого выходного тока. Мотал-перематывал тороид, пробовал разные количества витков, менял номиналы деталей, а на выходе около 10 мА. Вдобавок ко всему, преобразователь работал на частоте около 20 кГц и раздражающе пищал.

Наконец, попались две схемы, которые и послужили прообразами моей конструкции:

 

Достоинство первой – стабилизация тока светодиода. Особенность второй – простая катушка вместо трансформатора. В результате слияния этих идей и адаптации под мои нужды получилась следующая схема (щелкайте, будет лучше видно):

 

Было проведено моделирование ее работы в аналоговом spice-симуляторе LTSpiceIV, по результатам которого подбирались оптимальные номиналы деталей. Начнем по порядку.

На транзисторах VT1, VT2, дросселе L1, резисторах R1, R2 и конденсаторе C1 собран генератор. Транзисторы надо выбирать с малым напряжением насыщения, тогда схема будет работать, пока хорошенько не разрядит батарейку. Рекомендуют использовать С3279, С2458, ZTX450. Я же ориентировался на то, что можно пойти и купить и поставил широко распространенные MMBT2222 и MMBT2907. Они выдерживают ток коллектора 600 мА в постоянном режиме и 800 мА импульсно. Напряжение насыщения коллектор-эмиттер у них 300 мВ, а база-эмиттер – 1,2 В при 150 мА коллекторного тока. Моделирование показывает, что схема работоспособна при напряжениях питания от 0,9 В. Это видно из следующего рисунка, на котором показано нарастание тока через светодиод после включения схемы при напряжениях питания от 1,6 В до 0,8 В с шагом 0,1 В.


Индуктивность дросселя L1 влияет на частоту генерации, при 47 мкГн она составляет 150 кГц. Можно брать десятки-сотни мкГн. Ток через дроссель (рисунок ниже) при свежих батарейках во время запуска составляет около 1 А, потом он снижается до значений порядка 130 мА. Значит, нам нужен дроссель на максимальный рабочий ток 1 А (или чуть выше). Я взял готовый магазинный.

 

Резистор R3 служит датчиком тока. При протекании через светодиод тока величиной в 20 мА на R3 падает напряжение 0,78 В, транзистор VT3 открывается и маленько усмиряет генерацию. Таким образом, имеем стабилизацию тока.

Диод Шоттки VD1 выпрямляет импульсы напряжения с дросселя, а конденсаторы C2 и C3 сглаживают их для питания HL1. C3 я взял танталовый, SMD типа C.

На этом можно было и остановиться, но, поскольку я захотел кроме ультрафиолетового, поставить также и обычный белый светодиод, пришлось усложнить схему.

Прежде всего, режимы работы фонарика «УФ», «Белый» нужно переключать. В момент переключения схема кратковременно оказывается ненагруженной и очень быстро (см. рисунок с переходными процессами) накачивает выходное напряжение. Когда переключатель замкнется, рискуем повредить светодиод импульсом тока. После перебора возможных вариантов решения этой проблеммы я пришел к выводу, что для второго светодиода нужно ставить свой тантал, тогда все будет хорошо. Повышенное напряжение будет накапливаться лишь на C2, а за счет разницы емкостей C2 и C3 на три порядка большого скачка напряжения не случится.

Однако, моделирование показало, что на холостом ходу преобразователя напряжение на C2 может вырасти до 100 В! Так и конденсатор накроется. Поэтому я добавил в схему еще стабилитрон VD2 для защиты от подобных случаев. При нагруженном преобразователе он закрыт и на работу схемы не влияет. Стабилитрон нужен мощный, чтобы выдерживал броски тока. По результатам моделирования эти броски составляют около 800 мА, а в моей реальной схеме оказалось около 500 мА. Поэтому я взял 1N4734A на 5,6 В, который выдерживает 810 мА в пике, вам же может понадобиться что-нибудь помощнее, типа 1N5339.

Наконец, по результатам моделирования такой фонарик потребляет в среднем 70 мА, что позволило оценить его эффективность. Выходит КПД около 57%.

В качестве корпуса был выбран закрытый отсек под три батарейки AAA, вот такой:

 

Называется SBH-431A. Хорошая вещь, однако. В таком корпусе можно также сделать прозвонку, какой-нибудь пульт. Верхняя и нижняя стенки почти 2 мм толщиной, а боковые и того больше. Удобно защелкивается, вот только недостаток – головка фиксирующего самореза маленькая и при закручивании оного треснул бортик вокруг отверстия в крышке. Впредь надо сначала закрутить саморез один раз без крышки, чтоб он себе резьбу нарезал, а потом уже, подложив шайбочку, с крышкой.

Платы я развел традиционно в Sprint-Layout, а изготовил с помощью фоторезиста, но немного модифицированным методом. Итак, берем и распечатываем зеркальные негативные рисунки плат на листе тетрадной бумаги. Слишком плотную и белую брать нежелательно – будет поглощать много света. Самые простые тетради с сероватой бумагой тоже не подходят, потому что рисунок плохо пропечатывается, краска растекается по волокнам (впрочем, для лазерных принтеров, может, и сойдет).

 

Дальше берем хозяйственную свечку и растапливаем ее в какой-нибудь емкости на водяной бане. В расплавленный парафин макаем нашу бумагу, вытаскиваем, даем стечь парафину. Важно оставлять запас по краям – там образуются утолщения. Когда всё остынет, вырезаем наши рисунки и получаем довольно неплохой фотошаблон. Без всякой пленки.

 

Как это работает? Да просто. Из обычной бумаги фотошаблона не получится, потому что она неоднородна. Древесные волокна рассеивают свет, так что он существенно поглощается в толще бумаги. Кроме того, сейчас в бумагу вводят всякие вещества – оптические отбеливатели, которые поглощают свет в невидимой ультрафиолетовой области спектра, а излучают в видимой. Поэтому она и выглядит такой белой. А между тем, существует же спрей Transparent, который пшикнешь на бумагу и пожалуйста, засвечивай плату! Значит, все-таки можно бумагу сделать прозрачнее, надо лишь чем-то ее пропитать, промаслить. Парафин у меня как раз и выполняет эту функцию, вместо дорогого спрея.

 

Корпус нужно немного доработать: просверлить отверстия под светодиоды, выпилить отверстия под переключатели, вклеить стойки для центральной платы. В качестве стоек я выпилил кусочки 5 мм текстолита, просверлил отверстия и нарезал резьбу. Цианоакрилатом вклеивается намертво. Переключатели движковые, 11,5 х 5,7 х 5,0 мм. Под один из них пришлось сделать прорези в разделительных перегородках. В итоге получилась вот такая компоновка:

 

Верхняя плата – основная, с ультрафиолетовым светодиодом. Сперва хотел впаять в нее проволочную скобу, чтобы упиралась в крышку, но длина платы (46,5 мм) оказалась настолько удачной, что она туго входит на свое место и держится там на трении. На нижней плате размещены переключатели и белый светодиод со своим танталом.

Осциллограмма напряжения после дросселя L1:

 

Частота колебаний составляет 110 кГц.

На резисторе R3 происходит следующее:

 

Это соответствует 0,4 мА пульсаций, то есть 2,3% от 17,4 мА тока через светодиод.

В конечном сборе фонарик выглядит так:

 

Теперь начинается самое интересное. Человеческий глаз не видит излучения с длиной волны 365 нм, и, тем не менее, включенный светодиод прекрасно видно, он выглядит светло-лиловым. Так получается, оттого что стекловидное тело в глазу поглощает ультрафиолетовое излучение и светится, это свечение мы и видим. Не стоит смотреть на включенный светодиод, так же как и на включенную лампу «черного света». Хоть такие лампы и позиционируются как интерьерная подсветка, но напрямую для глаз они могут быть вредны. Камера светодиод тоже видит.

Обычная вода люминесцирует голубовато-зеленоватым светом под действием ультрафиолетового излучения:

 

Офисная бумага интенсивно светится синим, а старые книги – нет. В темноте светятся зубы. Если пойти на кухню, можно отыскать незаметные при обычном освещении осаждения жира – они выглядят бледно-зелёными. В ванной светится мыло, мягкое сиреневое сияние излучает зубная паста.

 

Хорошо светятся офисные маркеры и многие пластмассовые изделия, салатовым светится стеклотекстолит и канифоль. Можно проверять деньги. На фото плохо видно, но там на купюре еще есть много таких маленьких, хаотически разбросанных полосочек, у каждой одна половина салатовая, другая красная.

 

Вот, пожалуй, и всё. Данная статья будет полезна не только тем, кто захочет повторить фонарик с ультрафиолетовым светодиодом. Это может быть самый обыкновенный белый фонарик-брелок. Если светодиод на 20 мА, ничего пересчитывать не надо. На основной плате нужно лишь замкнуть пару соседних полигонов (C2 и C3), а VD2 вообще не ставить. Можно взять отсек на две батарейки и использовать штатный выключатель – получится еще меньшая конструкция. Можно применить батарейку AA, тогда время работы фонарика составит от 15 часов (для AAA оно от 4 часов и более, в зависимости от дешевизны батарейки).

Прикрепляю схему, файлы проектов Sprint-Layout и LTSpiceIV. Засим – мяу!


Файлы:
Версия на КТ315 (по просьбе читателей)
Архив с файлами
Изображение


Все вопросы в Форум.




Как вам эта статья?

Заработало ли это устройство у вас?

41 2 0
2 0 0

Эти статьи вам тоже могут пригодиться: