Например TDA7294

Форум РадиоКот :: Просмотр темы - Кто то доставал до дна производительности STM32F1 ?
Форум РадиоКот
http://radiokot.ru/forum/

Кто то доставал до дна производительности STM32F1 ?
http://radiokot.ru/forum/viewtopic.php?f=59&t=163975
Страница 4 из 4

Автор:  КРАМ [ Чт окт 03, 2019 14:44:50 ]
Заголовок сообщения:  Re: Кто то доставал до дна производительности STM32F1 ?

Простейшая рекурсия - это экспоненциальный фильтр.
Медианная фильтрация тут вообще не причем. Это вид нелинейной фильтрации.
Дифференциальная составляющая В ПРИНЦИПЕ не может запаздывать. Просто по определению.

Автор:  ПростоНуб [ Чт окт 03, 2019 14:50:51 ]
Заголовок сообщения:  Re: Кто то доставал до дна производительности STM32F1 ?

Простейшая рекурсия - это экспоненциальный фильтр.
Медианная фильтрация тут вообще не причем. Это вид нелинейной фильтрации.

Именно потому, что медианная фильтрация нелинейна, она и является оптимальной для фильтрации невязки. И я объяснил почему.
А дифференциальная составляющая по определению будет опаздывать, если производную Вы будете считать более, чем по четырем последним значениям невязки. Можете проверить в Maxima или MatLab, что там Вам больше по душе )))

Автор:  КРАМ [ Чт окт 03, 2019 14:58:08 ]
Заголовок сообщения:  Re: Кто то доставал до дна производительности STM32F1 ?

Я ничего не говорил о преимуществах или недостатках нелинейных фильтров, просто это совершенно не в тему. Есть нелинейные фильтры и получше медианного. Его достоинство в том, что он алгоритмически очень прост.
По поводу дифференциального канала. Какая разница какая у него длина, ели он среагирует на переходный процесс в первом же отсчете? Может Вы ведете речь о выходном процессе, а не о выходе ПИД регулятора?

Автор:  ПростоНуб [ Чт окт 03, 2019 15:09:03 ]
Заголовок сообщения:  Re: Кто то доставал до дна производительности STM32F1 ?

КРАМ, если невязка уже отфильтрована (именно нелинейным фильтром, чтобы избежать сглаживания), то реакция в первом же отчете наоборот, желательна, так как уменьшит время реакции регулятора. В любом случае, интегрирующая и пропорциональная составляющие не позволят только дифференцирующей составляющей существенно повлиять на управляющий сигнал.
А вот количество слагаемых для дифференциального канала очень существенно. У нас на входе функция, определенная только слева, поэтому значение производной в последней точке мы тоже вынуждены считать только слева. И чем более длинный промежуток мы возьмем для расчета производной в граничной точке, тем выше будет математическая ошибка вычисления этой производной. Конечно, можно сначала интерполировать методом того же Лагранжа эти точки, после чего вычислить значение производной в искомой граничной точке. Однако это не даст удовлетворительного результата, если график изменения нашей функции не имеет ничего общего с графиком полученного полиномиального многочлена. В общем случае, мы получим значение производной не в граничной точке, а на несколько точек до нее. Это и есть запаздывание дифференцирующей составляющей, так как пропорциональная и интегрирующая составляющая реагируют сразу же на текущее значение невязки.

Автор:  jcxz [ Чт окт 03, 2019 15:25:49 ]
Заголовок сообщения:  Re: Кто то доставал до дна производительности STM32F1 ?

Круто, да? У больного человека получился интеграл на 15 меньше действительности, а среднее — на 3 меньше
Ничего не понял из тех подсчётов на пальцах... :dont_know:

Но раз больны, то пойдите-ка лучше подлечитесь. А потом выздоровевшим глазом посмотрите на тот бред, что написали.
для быстрейшего выздоровления советую подумать над тем почему-же всё таки выражения 1) и 2):
1) (15+20+21+25+40)/5
2) ((1+15+20+21+25)+(40-1))/5
равны друг другу? Раз все вокруг тупые, а вы один умный.
Ваши же выражения.

PS: Честно говоря не думал, что ЕГЭ нанёс такой тяжёлый удар по подрастающему поколению.... :facepalm:

Автор:  Eddy_Em [ Чт окт 03, 2019 15:33:41 ]
Заголовок сообщения:  Re: Кто то доставал до дна производительности STM32F1 ?

jcxz, у меня просто нет слов! У вас принцип такой - попусту языком молоть?
Я ему про Фому, а он опять бред несет какой-то...

Автор:  ПростоНуб [ Чт окт 03, 2019 15:43:33 ]
Заголовок сообщения:  Re: Кто то доставал до дна производительности STM32F1 ?

Eddy_Em, да считайте интегрирующую составляющую от царя Гороха (с первой невязки) и не парьтесь. Для дифференцирующей составляющей, в большинстве случаев, достаточно помнить только предыдущее значение невязки. Иногда интересно для дифференцирующей составляющей n-2 значение невязки и в редчайших случаях учитывают n-3 значение. Все, помнить более трех значений невязки, кроме текущего, точно не нужно.

Автор:  Eddy_Em [ Чт окт 03, 2019 15:52:52 ]
Заголовок сообщения:  Re: Кто то доставал до дна производительности STM32F1 ?

ПростоНуб, здесь уже дело принципа: в разговор ворвались два совершенно безграмотных инженера (jcxz и VladislavS), которые еще и демагогию развели!
Собственно, что касается цифрового ПИДа, мне он совершенно не нужен в моих задачах, но вот цифровое интегрирование и дифференцирование может быть нужно. И то, как некоторые предлагают считать, вообще ни с какой логикой не вяжется!

Автор:  jcxz [ Чт окт 03, 2019 16:55:24 ]
Заголовок сообщения:  Re: Кто то доставал до дна производительности STM32F1 ?

ПростоНуб, здесь уже дело принципа: в разговор ворвались два совершенно безграмотных инженера (jcxz и VladislavS), которые еще и демагогию развели!
Да считайте хоть на пальцах! И хоть год 2 + 2 складывайте. Чем больше будет таких "пейсателей" тем больше денех будут платить нам с VladislavS. И тем бережнее к нам будут относиться. :)))

Автор:  Eddy_Em [ Чт окт 03, 2019 17:13:07 ]
Заголовок сообщения:  Re: Кто то доставал до дна производительности STM32F1 ?

Вот за такое:
Если нет буфера, то вычитай среднее значение и прибавляй новое - будет практически то же самое.

уж точно никто платить не будет!

Автор:  Мурик [ Чт окт 03, 2019 19:07:14 ]
Заголовок сообщения:  Re: Кто то доставал до дна производительности STM32F1 ?

Eddy_Em писал(а):
О, вас уже двое. Совершенно не разбирающихся в вопросе и лепящих отсебятину. Веселые люди...Простой пример. Пусть функция принимает 6 значений: 1, 15, 20, 21, 25, 40. Мы считаем интеграл по пяти последним значениям. В этом случае на числе 25 сумма будет равна 82, а среднее — 16. ОК

Автор:  240265 [ Чт окт 03, 2019 21:57:16 ]
Заголовок сообщения:  Re: Кто то доставал до дна производительности STM32F1 ?

Эй, умники, Вы название темы то прочтите...

Автор:  KBH-I [ Пн ноя 04, 2019 17:16:11 ]
Заголовок сообщения:  Re: Кто то доставал до дна производительности STM32F1 ?

)))

Страница 4 из 4 Часовой пояс: UTC + 3 часа
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group
http://www.phpbb.com/