
µCUPS – модуль питания с резервным аккумулятором

История изменений:

Версия	Дата	Описание
0.1	28/07/2019	Начало работы над документом
1.0	29/07/2019	Первый релиз документа
1.1	09/09/2019	Правки для публикации
1.2	10/09/2019	Добавлены фотографии

Содержание

Введение	3
Схема модуля	3
«Системное» напряжение (Vsys)	
Перемычки R17 и R20.	
Установка выходных напряжений	4
Печатная плата	4
Фото модулей	5
Переполюсовка аккумулятора	5
Полезные ссылки	

Введение

В некоторых случаях электронные устройства должны продолжать функционировать и в случае отключения питающего напряжения. Чтобы это обеспечить, используют резервный источник, от которого питается устройство во время отсутствия основного.

Дешевые и очень распространенные модули заряда на микросхеме ТР4056 иногда используются для питания устройств на микроконтроллерах. В моем случае, мне хотелось такой же, «только с перламутровыми пуговицами». А именно:

- 1) держатель аккумулятора типоразмера 18650 на плате модуля;
- 2) синхронный понижающий преобразователь с выходным напряжением 3.3V с опцией эффективной работы при малых токах нагрузки и максимальной скважностью 100% (для питания микроконтроллера и других компонентов устройства)
- 3) опционально повышающий преобразователь с выходом 5..12V (для питания исполнительных устройств, ...)

Вот именно такой модуль, с перечисленными выше изменениями и был сделан.

Схема модуля

Схема модуля представлена на рисунке:

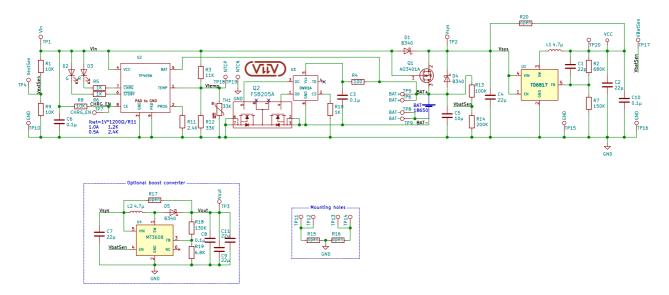


Схема не отличается оригинальностью, «обвязка» микросхем по рекомендациям из документации. Однако, все же некоторые пояснения.

«Системное» напряжение (Vsys)

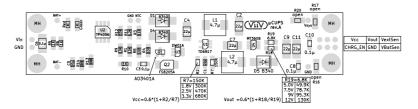
Диоды D1 и D4 служат для «объединения» входного напряжения (**Vin**) и напряжения резервной батареи (**Vbat**). Р-канальный полевой транзистор Q1 шунтирует D4 при отсутствии входного напряжения, чтобы уменьшить потери на D4 при питании устройства от аккумулятора.

Перемычки R17 и R20

Если в конкретном применении не нужен повышающий преобразователь (boost converter), то соответствующие компоненты не запаиваются на печатную плату. Чтобы подключить **Vsys** к выводу питания **Vout** необходимо замкнуть **R17**.

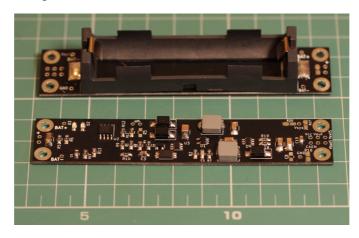
Аналогично, если не нужен понижающий преобразователь (buck converter), не запаиваются соответствующие компоненты и замыкается R20 (в этом случае на выводе Vcc будет «системное» напряжение Vsys).

Установка выходных напряжений


Выходное напряжение понижающего преобразователя определяется номиналами резисторов делителей обратной связи: **R2**, **R7** – для понижающего преобразователя; **R18**, **R19** — для повышающего.

Понижающий преобразователь (TD6817)	Повышающий преобразователь (МТ3608)
$V_{cc} = V_{ref} \left(1 + \frac{R2}{R7} \right)$ Для TD6817 Vref = 0.6V	$V_{out} = V_{ref} \left(1 + \frac{R18}{R19} \right)$ Для MT3608 Vref = 0.6V
Если R7 = 150KΩ	Если $R19 = 6.8 K\Omega$
Vcc R2	Vout R18
3.3V 680KΩ	12V 130KΩ
2.5V 470KΩ	9V 95.3KΩ
1.8V 300KΩ	5V 49.9KΩ

Печатная плата


Печатная плата имеет размеры 104.2 x 20.4 мм. Все компоненты, кроме держателя элемента 18650 и терморезистора ТН1, монтируются с одной стороны.

Расположение компонентов на печатной плате:



Фото модулей

Модули питания uCUPS с держателем элемента 18650 и без.

Модуль uCUPS установленным аккумулятором типоразмера 18650.

Переполюсовка аккумулятора

Внимание! Держатель аккумулятора типоразмера 18650 в данном модуле не имеет механической защиты от неправильной установки элемента питания. Перед установкой элемента 18650 убедитесь в правильной полярности. Так же следует быть внимательным и соблюдать полярность при подключении питания и аккумулятора к модулю без держателя.

Полезные ссылки

- 1. Неплохое описание модулей заряда на микросхеме ТР4056
- 2. ТР4056, даташит с сайта производителя (на китайском языке :-)
- 3. ТР4056, даташит на английском языке (три страницы)
- 4. ТD6817 на сайте производителя и ТD6817 даташит
- 5. МТ3608 даташит