REF01/REF02/REF03

REF02 SPECIFICATIONS

 V_{IN} = 15 V, T_A = 25°C, I_{LOAD} = 0 mA, all grades, unless otherwise noted. Nongraded refers to REF02Z.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
OUTPUT VOLTAGE	Vo	A and E grades	4.985	5.000	5.015	V
		H grade and nongraded	4.975	5.000	5.025	v
		C grade	4.950	5.000	5.050	V
OUTPUT ADJUSTMENT RANGE ¹	ΔV _{TRIM}	A, E, H grades and nongraded, POT = 10 k Ω	±3.0	±6.0		%
		C grade, POT = 10 k Ω	±2.7	±6.0		%
INITIAL ACCURACY	VOERR	A and E grades			±15	mV
					±0.3	%
		H grade and nongraded			±25	mV
					±0.5	%
		C grade			±50	mV
					±1	%
TEMPERATURE COEFFICIENT	TCVo	A grade and non-graded, $-55^{\circ}C \le T_{A} \le +125^{\circ}C$		3	8.5	ppm/°C
		E and H grades, $0^{\circ}C \le T_{A} \le +70^{\circ}C$		10	25	ppm/°C
		C grade, $0^{\circ}C \leq T_{A} \leq +70^{\circ}C$ (-J and -Z packages)		20	65	ppm/°C
		C grade, $-40 \le T_A \le +85^{\circ}$ C (-P and -S packages)		20	65	ppm/°C
LINE REGULATION ²	$\Delta V_0 / \Delta V_{IN}$	A, E, H grades and nongraded, $V_{IN} = 8 V$ to 36 V		60	100	ppm/V
		A, E, H grades and nongraded, $V_{IN} = 8 V$ to 36 V, $0^{\circ}C \le T_A \le +70^{\circ}C$		70	120	ppm/V
		A, E, H grades and nongraded, $V_{IN} = 8V$ to $36 V$, $-55^{\circ}C \le T_A \le +125^{\circ}C$		90	150	ppm/V
		C grade, $V_{IN} = 8$ V to 36 V		90	150	ppm/V
		C grade, $V_{IN} = 8$ V to 36 V, 0°C $\leq T_A \leq +70$ °C (-J and -Z packages)		110	180	ppm/V
		C grade, $V_{IN} = 8$ V to 36 V,-40°C $\leq T_A \leq +85$ °C (-P and -S packages)		110	180	ppm/V
LOAD REGULATION ²	$\Delta V_0 / \Delta I_{LOAD}$	A and E grades, $I_{LOAD} = 0$ mA to 10 mA		60	100	ppm/m
	0. 2010	A and E grades, $I_{LOAD} = 0$ mA to 8 mA, $0^{\circ}C \le T_A \le +70^{\circ}C$		60	100	ppm/m/
		A and E grades, $I_{LOAD} = 0$ mA to 8 mA, $-55^{\circ}C \le T_A \le +125^{\circ}C$		70	120	ppm/m/
		H grade and nongraded, $I_{LOAD} = 0$ mA to 10 mA		60	100	ppm/m/
		H grade and nongraded, $I_{LOAD} = 0$ mA to 8 mA, $0^{\circ}C \le T_A \le +70^{\circ}C$		70	120	ppm/m/
		H grade and nongraded, $I_{LOAD} = 0$ mA to 8 mA, $-50^{\circ}C \le T_A \le +125^{\circ}C$		90	150	ppm/m/
		C grade, $I_{LOAD} = 0$ mA to 8 mA		60	150	ppm/m/
		C grade, $I_{LOAD} = 0$ mA to 5 mA, $0^{\circ}C \le T_A \le +70^{\circ}C$ (-J and -Z packages)		80	180	ppm/m/
		C grade, $I_{LOAD} = 0$ mA to 5 mA, $-40^{\circ}C \le T_A \le +85^{\circ}C$ (-P and -S packages)		80	180	ppm/m/
DROPOUT VOLTAGE	V _{DO}				2	V
QUIESCENT CURRENT	I _{IN}	A, E, H grades and nongraded		1.0	1.4	mA
	•	C grade		1.0	1.6	mA
LOAD CURRENT	ILOAD			1.0	1.0	
Sourcing	ILOAD	A, E, H grades and nongraded			10	mA
Sourcing		C grade			8	mA
Sinking					-0.3	mA
SHORT CIRCUIT TO GND	Isc	$V_0 = 0 V$		30	0.5	mA
VOLTAGE NOISE		- 0.1 Hz to 10.0 Hz (-S, - Z and -P packages)		15		μV p-p
	е _{N p-p}	0.1 Hz to 10.0 Hz (-J package)	1	20		μν p-p
LONG-TERM STABILITY ³	ΔVo	After 1000 hours of operation		50		
TURN-ON SETTLING TIME		Output settling to within $\pm 0.1\%$ of final value		50		ppm
TORN-ON SETTLING TIME	t _R			Э		μs
	N			500		
Voltage Output at TEMP Pin				580		mV
Temperature Sensitivity	TCV _{TEMP}			1.96		mV/°C

¹ Refer to the Output Adjustment section.
² Specification includes the effects of self-heating.
³ Long-term stability is noncumulative; the drift in subsequent 1000-hour periods is significantly lower than in the first 1000-hour periods. Refer to Application Note AN-713.
⁴ Refer to the Temperature Monitoring section.