

High Precision 8.192 Volt IC Reference

AD689

1.1 Scope.

This specification covers the detail requirements for a high precision, 8.192 volt IC reference.

1.2 Part Number.

The complete part number per Table 1 of this specification is as follows:

Device	Part Number			
-l	AD689SQ/883B			
-2	AD689TQ/883B			

1.2.3 Case Outline.

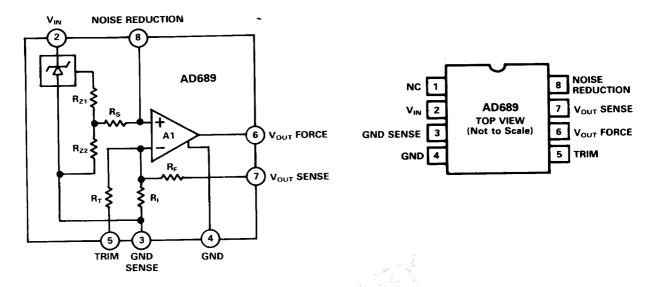
See Appendix 1 of General Specification ADI-M-1000: package outline: Q-8.

1.3 Absolute Maximum Ratings. $(T_{\Lambda} = +25^{\circ}Cunless otherwise noted)$

nput Voltage V_{IN} to Ground	V
enput Voltage V _{IN} to Ground ± 200m END to GND Sense ± 500m'	V
ND to GND Sense	W
ND to GND sense	ď
torage Temperature Range	C,
ead Temperature (Soldering 10sec)	Ū

1.5 Thermal Characteristics.

Thermal Resistance $\theta_{JC} = 22^{\circ}\text{C/W}$ $\theta_{JA} = 110^{\circ}\text{C/W}$

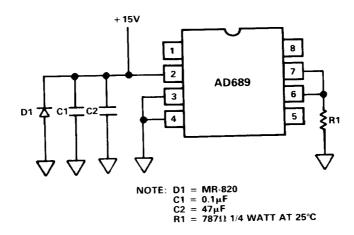

AD689 — SPECIFICATIONS

Test	Symbol	Device	Design Limit @+25°C	Sub Group 1	Sub Group 2,3	Sub Group 4	Test Condition ¹	Units
Quiescent Current	I_{CC}	-1,2	5	5				+ mA max
Output Voltage Error	V _{OUT}	-1 -2	16 4	16 16		4		± mV max
Gain Adjustment	V_{ADJ}	-1,2	+ 655 - 245	+ 655 - 245				mV min
Line Regulation	VR _{LINE}	-1,2	250	250	250		10.8V≤V _{IN} ≤36V	± μV/V max
Load Regulation, Sourcing	VR _{LOAD}	-1,2	100	100	100		$I_L = 0 \text{mA to } 8.192 \text{mA}$	± μV/mA max
Load Regulation, Sinking	I _{OUT}	-1,2	100	100	100		$I_L = -8.192 \text{mA to } 0 \text{mA}$	± μV/mA max
Output Voltage Temperature Coefficient	DV _{OUT} /dT	-1 -2	20 10		20 10			± ppm/°C max
Output Short-Circuit Current	I_{SC}	-1,2	50	50			To Ground, to V _{IN}	+ mA max

 ${ NOTE \atop {}^{1}V_{IN} = + 12V, no \, load \, unless \, otherwise \, indicated. }$

Table 1.

3.2.1 Functional Block Diagram and Terminal Assignments.



3.2.4 Microcircuit Technology Group.

This microcircuit is covered by technology group (59).

4.2.1 Life Test/Burn-In Circuit.

Steady state life test is per MIL-STD-883 Method 1005. Burn-in is per MIL-STD-883 Method 1015 test condition (B).

This information applies to a product under development. Its characteristics and specifications are subject to change without notice. Analog Devices assumes no obligation regarding future manufacture unless otherwise agreed to in writing.