Индикаторы звуковых сигналов.
Автор: Юрий Зотов Часть I. Стрелочные индикаторы.
Стрелочные индикаторы, с колеблющейся в такт музыки стрелкой, вполне современно смотрятся на передних панелях усилителей до сих пор. И если наличие таких индикаторов ранее было действительно необходимо, то сейчас острой нужды в них нет.
1. Стрелочный прибор.
Конструкция. На рисунке выше представлена измерительная головка модели М6850 как наиболее распространённая и доступная, на данный момент, многим начинающим радиолюбителям. Лично я все свои схемы отрабатывал именно на ней.
Принцип действия. 2. Что измерять.
Ну, вроде бы, всё понятно: измеряем величину переменного напряжения в звуковом тракте. В практике измерений известны: максимальная величина (амплитудное значение) сигнала, средневыпрямленное значение, среднеквадратичное значение сигналов. Мы не будем лезть в глубь теорий, определимся только с тем, что в нашем случае, мы измеряем средневыпрямленное значение. А шкалы наших приборов откалиброваны в децибелах (реже в процентах) от установленного "эталонного" уровня сигнала ("0" dB). То есть, мы будем измерять не саму величину сигнала, а его отношение, к некоторой эталонной величине К=Uэталон./Uизмерен. , выраженной в децибелах. Для перевода измеренных значений в децибелы используют следующую формулу: А= 20 Lg Uэталон./Uизмерен .
3. Как измерять. Из того, что я написал выше, следует логический вывод: чтобы индикатор работал так, как мы того ждём, необходимо преобразовать переменный ток в пропорциональный ему ток постоянный и подать его на измерительную головку. Первое, что приходит в голову, представлено на рисунке: Как ни странно, но такой индикатор будет работать. После небольшого "ретуширования", он приобретает следующий вид:
И вполне может трудиться, скажем, при измерении выходной мощности какого - либо усилителя мощности. Ну а что, вообще можно сказать о подобной схеме? Работает она следующим способом: избыток сигнала до необходимого значения гасится резистивным делителем R1, R2. Диод преобразует переменный сигнал в постоянный (пульсирующий), путём среза "отрицательной" полуволны звукового сигнала. Полученный таким способом сигнал "сглаживается" на конденсаторе С1 и далее поступает на измерительную головку. Именно от этого конденсатора зависит время реакции и восстановления измерителя. До определённых, конечно, величин... Хороша схема или плоха? Вот её плюсы и минусы.
Как видно, по сравнению с предыдущей схемой добавлен транзистор VT1, что несколько повысило чувствительность схемы. Однако остальные недостатки остались.
В этом случае мы получаем буфер с высоким входным и низким выходным сопротивлением. Однако, поскольку Кпередачи эмиттерного повторителя не может быть больше единицы, мы не сможем получить от этой схемы повышения чувствительности. Остальные недостатки измерителя так же сохраняются.
Эту схему (в различных интерпретациях) часто используют в аппаратуре с однополярным питанием. Мною она так же была повторена не однократно и доказала высокую повторяемость и стабильность работы. В ней устранено большинство недостатков, приведённых выше схем. Транзисторный усилитель на VT1, VT2 имеет высокое входное и низкое выходное сопротивление. Питаться схема может от источника с напряжением от 3 до 25 вольт (зависит от применяемых транзисторов). Не критична к номиналам пассивных элементов. Есть конечно и минусы - однополупериодный выпрямитель VD1, VD2 (обратите внимание, что здесь он реализован по схеме умножителя напряжения). Как следствие - некоторая неточность измерений. Однако простота и универсальность устройства с лихвой компенсируют этот недостаток.
Как видно в этой схеме активным элементом выступает операционный усилитель. Кроме уменьшения количества пассивных деталей, данная схема практически идентична предыдущей схеме и содержит в себе те же преимущества и недостатки.
Указанные варианты сохраняют преимущества схем описанных выше, но и измеряют уже две полуволны звукового сигнала, за счёт применения диодного моста. Схема, представленная на рисунке справа, к тому же, обеспечивает ЛИНЕЙНОЕ перемещение стрелки измерительной головки, поскольку последняя включена в цепь обратной связи операционного усилителя. Чувствительность индикаторов можно регулировать подбором сопротивления R3. Входное сопротивление индикаторов составляет около 47 кОм. Напряжение питания зависит от типов применяемых ОУ, а в качестве усилителя можно применять практически любые ОУ, с выходными токами более 5mA. Но я бы рекомендовал использовать ОУ с полевыми транзисторами на входе (К140УД8, КР 544УД2 и т.д.). В таком случае, будет возможность повысить входное сопротивление узла простым увеличением номиналов резистивных делителей на входе (R1, R2).
Типовая схема включения микросхемы: Как видно у микросхемы небольшое количество навесных элементов, что облегчает использование её не только в стрелочных индикаторах, но и в других приборах, о чём будет сказано во второй части статьи. Отмеченное пунктиром на схеме может и не устанавливаться, но стоит заметить, что R3 и R4 при установке, повышают чувствительность измерителя. Так как у микросхемы большой диапазон питающих напряжений, её вполне можно использовать и в переносной (низковольтовой) аппаратуре. Мне она встречалась даже в переносном магнитофоне "Весна-207" (по - моему и в "Весне -212"), "Русь - 207". 4. Что можно улучшить?
Индикаторная головка, является системой механической, а значит с определённым (фиксированным) временем реакции на импульсный сигнал. При подаче сигнала достаточно большой длительности стрелка соответствующим образом на него отреагирует. При приходе на головку импульсного сигнала меньшей длительности, измеритель просто не сможет на него адекватно среагировать. В таких случаях, к обычным стрелочным индикаторам, добавляют индикаторы пикового сигнала, собранных обычно на светодиодах. Пиковый индикатор позволяет фиксировать приход импульса малой длительности с уровнем превышающим некоторый пороговый. О чём сигнализирует вспыхнувший светодиод.
Небольшое пояснение к схеме: при импульсах достаточной длительности, ток течёт на стрелочный индикатор по цепи R1, R2, C2. Элементами R2 C2 определяется обратный ход стрелки. При появлении короткого импульса, сопротивление цепи R1, R2 C2 для него достаточно велико, и он проходит на индикатор по ускоряющему конденсатору С1. На практике это выглядит не как "биение" стрелки, но как быстрый подход её в левую часть шкалы, и медленный уход в правую. Номиналы цепи я не указал преднамеренно, поскольку их желательно подобрать строго индивидуально. Однако у меня, при использовании стрелочного индикатора М, их значения были следующие: R1-3,3 кОм, R2 - 1,2 кОм, С1- 0,22 - 4,7 mF, С2-10 - 47mF. 5. Для полноты картины. Стрелочные приборы могут быть использованы как индикаторы межканального баланса: Как видно из схемы, ничего сложного здесь нет. На измерительной головке происходит суммирование выпрямленных токов левого и правого каналов. При равном (по модулю) значении, токи взаимно компенсируются, и стрелка индикатора находиться на "0". При некотором превышении уровня сигнала, токи компенсируются не полностью, и стрелка начинает отклонение в соответствующую сторону. Стоит отметить, что такая схема будет нормально работать с тем индикатором, у которого заводом - изготовителем предусмотрено начальное размещение стрелки на середине шкалы. Правда можно использовать и обычные индикаторы, предварительно подав на него смещающее постоянное напряжение. Однако я бы предпочёл просто разобрать индикатор и немного сдвинуть держатель пружинного подвеса в нужную сторону. 6. Заключение. Я конечно осознаю, что в рамках одной статьи невозможно рассмотреть все способы схемопостроения стрелочных индикаторов. Однако я попытался в доступной форме, без приведения всевозможных формул, изложить только основные, ПРАКТИЧЕСКИ ПРОВЕРЕННЫЕ, способы и схемы их реализации. Те, кто заинтересовались и намерены узнать что-либо побольше обо всём этом, - читайте литературу и посещайте форумы. Вопросы, как обычно, складываем тут.
|
|
|||||||||||||||||||||||||||||||
|
||||