![]() |
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||
Блок питания
Автор: Сергей Привет, кого не видел. ![]() В этой части, как и обещалось, мы поговорим о еще одном типе стабилизаторов – компенсационном . Как видно из названия (название видно, нет?), принцип действия их основан на компенсации чего то чем то. Чего и чем сейчас узнаем. Для начала, рассмотрим схему простейшего компенсационного стабилизатора. Его схема более сложная, чем обычного параметрического, но совсем чуть-чуть. Схема состоит из следующих узлов:
Работает весь этот зоопарк следующим образом. ИОН выдает опорное напряжение, равное напряжению на выходе стабилизатора на эмиттер VT 1. Напряжение с делителя поступает на базу VT 1. В результате, этому бедолаге приходится решать, что же делать с напряжением на коллекторе – то ли оставить все как есть, то ли увеличить, то ли уменьшить. И чтобы сильно не морочиться, он поступает так – если напряжение на базе меньше опорного (которое на эмиттере), он увеличивает напряжение на коллекторе, открывая сильнее, таким образом, транзистор VT 2 и увеличивая напряжение на выходе, если же напруга на базе больше опорного, то происходит обратный процесс. В результате всей этой возни, напряжение на выходе остается неизменным, то есть стабилизированным, что и требуется. Причем, по сравнению с параметрическими стабилизаторами, коэффициент стабилизации у компенсационных значительно выше. Так же выше и КПД. Резистор R 4 нужен для подстройки в небольших пределах выходного напряжения стабилизатора. ![]() Ну а теперь перейдём к сладкому – к стабилизаторам на микросхемах. Я их называю стабилизаторами для ленивых, поскольку на пайку такого стабилизатора уходит минуты две, если не меньше. Чтобы сильно не тянуть резину, сразу переходим к схеме, хотя схема то… Итак, перед вами схема, которая до отвращения проста. В ней всего три элемента, причем обязательным является только один – микросхема DA 1. Кстати, сказать, интегральные стабилизаторы по своей сущности являются компенсационными. Нуте-с, что же нам требуется? Только одно – знать напряжение, которое мы хотим получить от стабилизатора. Дальше мы идём в табличку и выбираем себе микросхемку по душе.
Напряжение на входе микросхемы должно быть как минимум на 3 вольта выше, чем выходное, но не должно превышать 30 вольт. Ну собственно и все. Что, что? Тебе нужно не 15 вольт, а 14? Экий ты капризный. Ну да ладно. В качестве поощрительного приза (правда, пока не знаю за что) расскажу еще про одну схемку. ![]() Разумеется, кроме стабилизаторов с фиксированным напряжением, существуют интегральные стабилизаторы, специально заточенные под регулируемое напряжение. Итак, внимание на схему! Встречаем – КРЕН12А (можно и Б) – регулируемый стабилизатор напряжения 1,3-30 вольт и максимальным током 1,5 А. Кстати, у нее есть и буржуйский аналог – LM 317 (на схеме нумерация выводов для нее дана в скобках). Входное напряжение не более 37 вольт. Если очень хочется, в этой схеме есть что посчитать. Во всяком случае, если у тебя не нашлось резистора 240 Ом, можно воткнуть и другой, при этом пересчитав резистор R 2. Для чего существует хитрая формула. ![]() В формуле участвуют: Вообще говоря, формулу можно упростить, благодаря тому, что этот самый управляющий ток очень и очень мал – порядка 0,0055А, то есть на результат он практически не влияет. ![]()
Отсюда получаем, что: ![]() Ну, теперь посчитаем. После, берем МАКСИМАЛЬНОЕ напряжение, которое должен выдавать наш стабилизатор: R2=240(30-1,25)/1,25=5500 Ом, что есть 5,5 кОм. Такие вот пироги. Кстати, пока не забыл – микросхемы обязательно надо ставить на радиатор, иначе они сдохнут, причем довольно шустро. Правда грустно. ![]() Внешне, микросхемка в корпусе КТ28-2 выглядит вот таким образом:
![]() Расположение выводов микросхемы LM317. Так же распологаются выводы КРЕН12, если она выполнена в корпусе ТО-200:
Теперь точно все. Удачи! :)
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |


![]() |
![]() |
|||
|
||||
![]() |
![]() |